APPLICATION NOTE

Revision B	
Prepared by	T.Matsuoka, H.Nakanishi
Checked by	
Approved by	T.Ito
Date	9-Sep-'10

PRELIMINARY

CONFIDENTIAL MITSUBISHI IGBT MODULES

CM1800DY-34S

HIGH POWER SWITCHING USE INSULATED TYPE

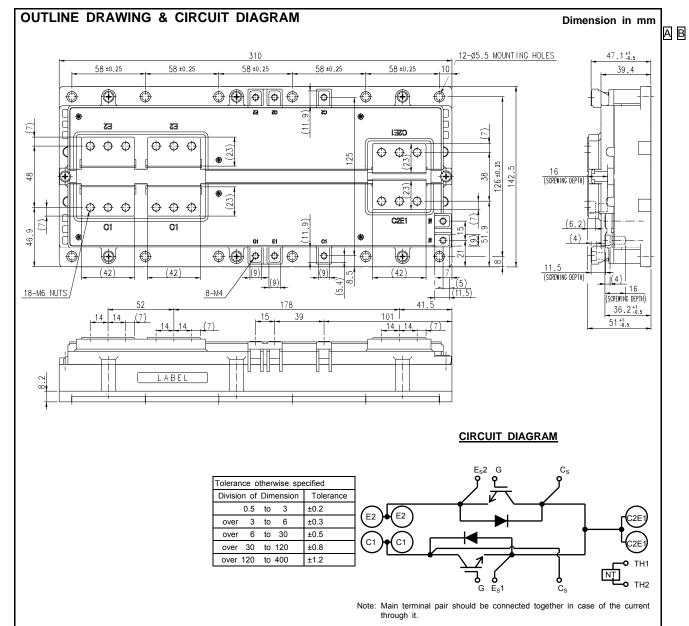
Notice: This is not a final specification. Some parametric limits are subject to change.

1800A/1700V

- Using New IGBT and FWDi -

•l_C 1800 A

•V_{CES} 1700 V


•Flat base Type Alminium base plate

•RoHS Directive compliant

•UL under application

APPLICATION

Wind power, AC Motor Control, Power supply, etc.

CM1800DY-34S

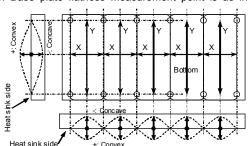
HIGH POWER SWITCHING USE INSULATED TYPE

PRELIMINARY

ABSOLUTE MAXIMUM RATINGS ($T_j=25$ °C, unless otherwise specified) Inverter IGBT/FWDi part

Symbol	Item	Conditions	Ratings	Unit		
V_{CES}	Collector-emitter voltage	G-E short-circuited	1700	V		
V _{GES}	Gate-emitter voltage	C-E short-circuited	±20	V		
Collector current		DC, T _C =89 °C (Note.2)	1800	Α		
I _{CRM}	Collector current	Pulse (Note.3)	3600			
P _{tot}	Total power dissipation	T _C =25 °C (Note.2, 4)	9350	W		
I _E (Note.1)	Emitter current	T _C =25 °C (Note.2, 4)	1800	^		
I _{ERM} (Note.1)	(Free wheeling diode forward current)	Pulse (Note.3)	3600	A		

Module


Symbol	Item	Conditions	Ratings	Unit
T_{jmax}	Maximum junction temperature	-	+175	
Tjop	Operating junction temperature	-	-40 ~ +150	°C
T _{stg}	Storage temperature	-	-40 ~ +125	
Tc	Case temperature	-	-40 ~ +125	
V _{isol}	Isolation voltage	Terminals to base plate, f=60 Hz, AC 1 minute	3500	V_{rms}

- Note.1: Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
- Note.2: Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface of base plate and heat sink just under the chips. (Refer to the figure of chip location)
- Note.3: Pulse width and repetition rate should be such that the device junction temperature (T_j) dose not exceed T_{jmax} rating.
- Note.4: Junction temperature (T_j) should not increase beyond $T_{j\,\text{max}}$ rating.

MECHANICAL CHARACTERISTICS

Cumbal	Item	Conditions		Limits						
Symbol	item	Conditions	Min.	Тур.	Max.	Unit				
M _t		Main terminals M 6 screw	3.5	4.0	4.5					
M _t	Mounting torque	Auxiliary terminals M 4 screw	1.3	1.5	1.7	N·m				
Ms]	Mounting M 5 screw	2.5	3.0	3.5					
d	Croopage distance	Terminal to terminal	16	-	-	mm				
ds	Creepage distance	Terminal to base plate	25	-	-	mm				
٦	Clearance	Terminal to terminal	16	-	-	mm				
d _a	Clearance	Terminal to base plate	24	-	-	mm				
m	Weight	-	-	2000	-	g				
ec	Flatness of base plate	On the centerline X, Y (Note.5)	-50	-	+100	μm				

Note.5: Base plate flatness measurement point is as in the following figure.

CM1800DY-34S

HIGH POWER SWITCHING USE **INSULATED TYPE**

ELECTRICAL CHARACTERISTICS (T_j=25 °C, unless otherwise specified) Inverter IGBT/FWDi part

Symbol	Item	Condition	6		Limits		Unit	
Syllibol	item	Condition	5	Min.	Тур.	Max.	Offic	
I _{CES}	Collector-emitter cut-off current	V _{CE} =V _{CES} , V _{GE} short-circ	uited	-	-	1	mA	Α
I _{GES}	Gate-emitter leakage current	±V _{GE} =V _{GES} , V _{CE} short-cir	cuited	-	-	5	μΑ	Α
$V_{GE(th)}$	Gate-emitter threshold voltage	I _C =180 mA, V _{CE} =10 V		5.4	6.0	6.6	V	
		I _C =1800 A (Note.6),	T _j =25 °C	-	2.30	2.80		
		V _{GE} =15 V,	T _j =125 °C	-	2.50	-	V	
V	Collector emitter acturation valtage	Terminal	T _j =150 °C	-	2.55	-		
V_{CEsat}	Collector-emitter saturation voltage	I _C =1800 A,	T _j =25 °C	-	2.10	2.60		
		V _{GE} =15 V,	T _j =125 °C	-	2.30	-	V	
		Chip	T _j =150 °C	-	2.35	-		
Cies	Input capacitance		•	-	-	460		В
Coes	Output capacitance	V _{GE} short-circuited, V _{CE} =	=10 V	-	-	48	nF	
Cres	Reverse transfer capacitance			-	-	8		
Q _G	Gate charge	V _{CC} =1000 V, I _C =1800 A,	V _{GE} =15 V	-	8400	-	nC	Α
t _{d(on)}	Turn-on delay time			-	-	1100		
tr	Rise time	V _{CC} =1000 V, I _C =1800 A,	V _{GE} =±15 V,	-	-	200		
$t_{d(off)}$	Turn-off delay time	R_G =0 Ω, Inductive load		-	-	- 950		
t _f	Fall time			-	-	500		
t _{rr} (Note.1)	Reverse recovery time	V _{CC} =1000 V, I _E =1800 A,	V _{GE} =15 V,	-	-	350		
Q _{rr} (Note.1)	Reverse recovery charge	$R_G=0$ Ω , Inductive load	i	-	360	-	μC	
Eon	Turn-on switching energy	V _{CC} =1000 V, I _C =I _E =180	0 A,	-	510	-		
E _{off}	Turn-off switching energy	V_{GE} =±15 V, R _G =0 Ω , T	_j =150 °C,	-	545	-	mJ	
E _{rr} (Note.1)	Reverse recovery energy	Inductive load, Per pul	se	-	490	-		
		I _E =1800 A (Note.6),	T _j =25 °C	-	2.1	(2.6)		
		V _{GE} =0 V,	T _j =125 °C	-	2.2	-	V	
V _{EC} (Note.1)	Fusition collector valters	Terminal,	T _j =150 °C	-	2.15	-		
V _{EC}	Emitter-collector voltage	I _E =1800 A,	T _j =25 °C	-	- 1.9 (2			
		V _{GE} =0 V,	T _j =125 °C	-	2.0	-	V	
		Chip	T _j =150 °C	-	1.95	-		
R _{CC'+EE'}	Internal lead resistance	Main terminals-chip, per T _C =25 °C (Note.2)	nals-chip, per switch.		0.11	-	mΩ	
r _g	Internal gate resistance	Per switch		-	1.1	-	Ω	
								_

NTC thermistor part											
Symbol	Item	Conditions		Limits		Unit					
Syllibol	item	Conditions	Min.	Тур.	Max.	Offic					
R ₂₅	Zero power resistance	T _C =25 °C (Note.2)	4.85	5.00	5.15	kΩ					
ΔR/R	Deviation of resistance	T _C =100 °C, R ₁₀₀ =493 Ω	-7.3	-	+7.8	%					
B _(25/50)	B constant	Approximate by equation (Note.7)	-	3375	-	K					
P ₂₅	Power dissipation	T _C =25 °C (Note.2)	-	-	10	mW					

- Note.1: Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
- Note.2: Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface of base plate and heat sink just under the chips. (Refer to the figure of chip location)
- Note.3: Pulse width and repetition rate should be such that the device junction temperature (Tj) dose not exceed Tjmax rating.
- Note.4: Junction temperature (T_j) should not increase beyond $T_{j\,m\,a\,x}$ rating.
- Note.6: Pulse width and repetition rate should be such as to cause negligible temperature rise. (Refer to the figure of test circuit)

Note.7:
$$B_{(25/50)} = ln(\frac{R_{25}}{R_{50}})/(\frac{1}{T_{25}} - \frac{1}{T_{50}})$$

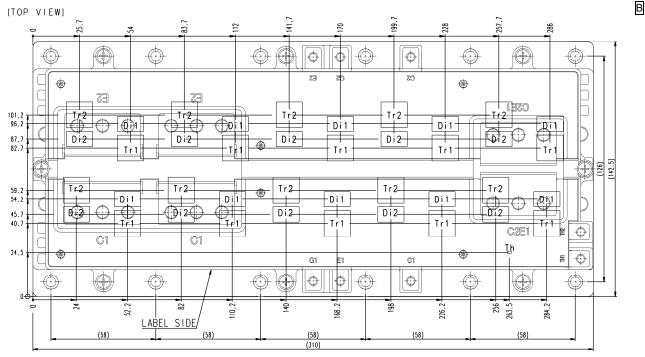
 R_{25} : resistance at absolute temperature T_{25} [K]; T_{25} =25 [°C]+273.15=298.15 [K] R_{50} : resistance at absolute temperature T_{50} [K]; $T_{50}\text{=}50$ [°C]+273.15=323.15 [K]

Α

CM1800DY-34S

HIGH POWER SWITCHING USE INSULATED TYPE

PRELIMINARY


THERMAL RESISTANCE CHARACTERISTICS

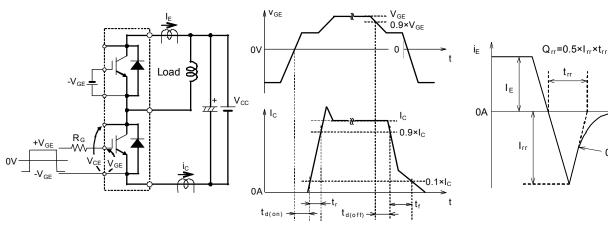
Symbol	Item	Conditions		Unit		
Syllibol	item	Conditions	Min.	Тур.	Max.	Offic
R _{th(j-c)Q} Thermal resistance (Note.2)		Junction to case, per Inverter IGBT	-	-	16	K/kW
$R_{th(j-c)R}$	Themanesistance	Junction to case, per Inverter FWDi	-	-	27	K/kW
R _{th(c-s)}	Contact thermal resistance (Note.2, 9)	Case to heat sink, per 1 module, Thermal grease applied (Note.8)	-	3.1	-	K/kW

- Note.2: Case temperature (T_c) and heat sink temperature (T_s) are defined on the each surface of base plate and heat sink just under the chips. (Refer to the figure of chip location)
- Note.8: Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).
- Note.9: When liquid-cooling, actual $R_{\text{th(c-s)}}$ should be used by measurement on each heat sink.

CHIP LOCATION (Top view)

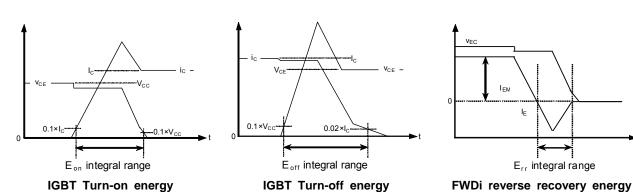
Dimension in mm (tolerance: ±1 mm)

Each mark points the center position of each chip. Tr1/Tr2: IGBT, Di1/Di2: FWDi, Th: Thermistor

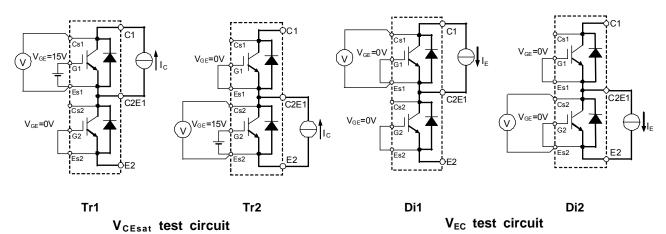


CM1800DY-34S

HIGH POWER SWITCHING USE INSULATED TYPE


PRELIMINARY

TEST CIRCUIT and WAVEFORMS



Switching time test circuit and waveforms

 t_{rr} , Q_{rr} test waveform

Switching energy (per pulse) test waveforms

CM1800DY-34S

HIGH POWER SWITCHING USE INSULATED TYPE

RECOMMENDED OPERATING CONDITIONS (T_a=25 °C, unless otherwise specified)

Symbol	Item	Conditions		Unit		
Syllibol	item	Conditions	Min.	Тур.	Max.	Offic
V _{CC}	DC supply voltage	Applied across P-N terminals	-	1000	1200	V
V_{GEon}	Gate-emitter drive voltage	Applied across G-E terminals	13.5	15.0	16.5	V
R_G	External gate resistance	-	0	-	2	Ω

LABEL EXAMPLE and 2D CODE SPECIFICATION

2D code specification

Data	contents
------	----------

Item	Specification	
Symbology	Data Matrix (ECC200)	
Data type	alphanumeric (ASCII) character][:
Error correction ability	20 ~ 35 %	
Symbol size	6.0 mm × 6.0 mm	
Cell size	0.25 mm	Ш
Code size	24 cell × 24 cell	
Data size	32 characters	

Item	letter size
Part number	20
Space	2
Date code	8
Space	2
total	32

Data contents example("sp" means space, equivalent to ASCII code number 32)

7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
(2	М	1	8	0	0	D	Υ	-	3	4	S	sp	М	0	1	Н	Α	1	G	sp	sp	sp									

CM1800DY-34S

HIGH POWER SWITCHING USE INSULATED TYPE

Keep safety first in your circuit designs!

·Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com/Global/index.html).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- ·The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Date of publication: 2010-9-8

